St. Luke's International University Repository

Pacemaker infection and endocarditis due to parvimonas micra: A case report and systematic review

メタデータ	言語: English
	出版者:
	公開日: 2023-04-14
	キーワード (Ja):
	キーワード (En): Parvimonas micra, pacemaker
	infection, endocarditis
	作成者: 鈴木, 隆宏, 石川, 和宏, 松尾, 貴公, 木島, 康文,
	青柳, 秀史, 河合, 富士美, 小宮山, 伸之, 森, 信好, Suzuki,
	Takahiro, Ishikawa, Kazuhiro, Matsuo, Takahiro, Kijima,
	Yasufumi, Aoyagi, Hideshi, Kawai, Fujimi, Komiyama,
	Nobuyuki, Mori, Nobuyoshi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10285/00016744
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	Pacemaker infection and endocarditis due to Parvimonas micra: A case report and
2	systematic review
3	Takahiro Suzuki ^a , Kazuhiro Ishikawa ^b , Takahiro Matsuo ^b , Yasufumi Kijima ^a , Hideshi
4	Aoyagi ^a , Fujimi Kawai ^c , Nobuyuki Komiyama ^a , Nobuyoshi Mori ^b
5	
6	^a Department of Cardiovascular Medicine, St. Luke's International Hospital, 9-1
7	Akashicho, Chuoku, Tokyo, 104-0044, Japan.
8	^b Department of Infectious Diseases, St. Luke's International Hospital, 9-1 Akashicho,
9	Chuoku, Tokyo, 104-0044, Japan.
10	^c St. Luke's International University Library, 10-1 Akashicho, Chuoku, Tokyo, 104-
11	0044, Japan.
12	
13	Corresponding Author: Takahiro Suzuki, MD
14	E-mail: takasu.623@gmail.com ¹
15	

¹ ¹ Abbreviations: CDIE, Cardiac device infective endocarditis; CT, Computed tomography; GNAR, Gram-negative anaerobic rods; GPAC, Gram-positive anaerobic cocci; IE, Infective endocarditis; MALDI-TOF MS, matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry; PPM, Permanent pacemaker; TEE, transesophageal echocardiography; WBC, White blood cell count.

16 ABSTRACT

- 17 Infective endocarditis caused by *Parvimonas micra* is rare. Its clinical features are
- 18 presented in this systematic review. We also describe the case of an 82-year-old man
- 19 with infective endocarditis and pacemaker infection due to *P. micra*. There are some
- 20 reports of recurrence during antimicrobial therapy; hence, careful follow-up is
- 21 necessary.
- 22
- 23 Keywords: Parvimonas micra, pacemaker infection, endocarditis

25 Introduction

26	Infective endocarditis (IE) is associated with high morbidity and mortality [1-3] and is
27	defined as a systemic septic disease with various manifestations [4]. The risk factors for
28	endocarditis include increasing age [5], male sex [6], poor dentition [7], and cardiac
29	implantable electronic devices [8]. Permanent pacemaker (PPM)-related infection has
30	been recognized since the 1970s [9], with an occurrence of 1.19% during the lifetime of
31	a device [10]. Cardiac device infective endocarditis (CDIE) has remarkably higher
32	mortality than cardiac device infections without endocarditis. Approximately 60%-80%
33	of causative pathogens of CDIE are of staphylococcal species, whereas other Gram-
34	positive cocci accounted for only 4% of all cases [11].
35	Parvimonas micra (P. micra) is a Gram-positive anaerobic coccus that forms part of
36	the normal commensal flora in the oral cavity and gastrointestinal tract [12]. Despite its
37	low virulence, some patients may develop bacteremia [13], lung abscess [14],
38	meningitis [15], cerebral and brain abscesses [16], spondylodiscitis [17], and iliopsoas
39	abscesses [18]. P. micra endocarditis is uncommon, with few reports published
40	previously [19,20]. Additionally, their pathogenic implication has been underestimated
41	because of their slow growth and difficulty in identification.
42	This is the first report of right-sided IE involving a pacemaker by <i>P. micra</i> . Another

43	strength is that the patient deteriorated clinically despite negative blood cultures,
44	emphasizing the importance of frequent follow-up with echocardiography given P.
45	micra is difficult to grow. Herein, we present the case of pacemaker infection and a
46	systematic review of endocarditis due to P. micra.
47	
48	Description of the Case
49	An 82-year-old man came to our hospital with acute onset of fever and dizziness. He
50	had a past medical history of pacemaker implantation due to sick sinus syndrome,
51	undergoing synthetic graft replacement for an abdominal aortic aneurysm two decades
52	ago, and hypertension. He was regularly taking aspirin 100 mg once a day and olmesartan
53	medoxomil 10 mg once a day before admission. He was a social drinker but had no history
54	of smoking. His occupation was a businessman, now retired, living in a retirement home,
55	and originally independent in his daily activities, and he was walking with a cane. On
56	admission, he was in acute distress, and his vital signs were clear consciousness;
57	temperature, 38.4°C; blood pressure, 114/75 mm Hg; pulse rate, 74 beats/min (not
58	pacemaker rhythm); respiratory rate, 18 breaths/min; and oxygen saturation, 94% at room
59	temperature. Physical examination revealed a grade III diastolic murmur that was most
60	audible in the left third intercostal space. He had poor oral hygiene and dental caries. No

61	immunological phenomena (Roth spots or Osler nodes) or vascular phenomena (Janeway
62	lesions, conjunctival petechiae, or splinter hemorrhage) were observed. Lungs were clear
63	to auscultation, and no abnormal abdominal findings were found. Neurological findings
64	showed no sensory or motor deficits and no abnormalities related to central nervous
65	system. Laboratory investigations revealed a total white blood cell count (WBC) of
66	15,000/ μ L (WBC differential comprising 87% neutrophils, 4% lymphocytes, 6%
67	monocytes, and 3% eosinophils), hemoglobin level of 13.3 g/dL, platelet count of
68	121,000/ μ L, aspartate aminotransferase at 19 U/L, alanine aminotransferase at 8 U/L,
69	lactate dehydrogenase of 314 IU/L, total bilirubin at 1.4 mg/dl, alkaline phosphatase of
70	189 IU/L, blood urea nitrogen 18 mg/dL, creatinine 0.96 mg/dL, and C-reactive protein
71	level of 2.51 mg/dL. Urinalysis was negative for urinary white or red blood cells and
72	nitrites, and the urine bacteriology test was negative. Contrast-enhanced computed
73	tomography (CT) of the chest-abdomen-pelvis area revealed no inflammation or artificial
74	blood vessel infection. After admission, we started ceftriaxone (2.0 g intravenously [IV])
75	every 24 hours empirically.

Blood cultures on admission grew clusters of Gram-positive cocci on day 5. Transthoracic echocardiography revealed moderate tricuspid valvular regurgitation and no signs of vegetation; however, on day 7, transesophageal echocardiography (TEE)

79	revealed vegetation on the tricuspid valve and pacemaker lead (mainly the atrial lead)
80	(Figure 1). Therefore, ceftriaxone was replaced with ampicillin (2.0 g IV) every 4 hours
81	and gentamicin (180 mg IV) every 24 hours. On day 12, we removed the pacemaker and
82	leads surgically and inserted a temporary pacemaker. On day 13, the blood cultured
83	pathogen on admission was confirmed to be P. micra using matrix-assisted laser
84	desorption/ionization and time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker
85	Daltonic, Bremen, Germany). Since the patient was receiving appropriate antimicrobial
86	regimens, the culture pathogen tests for the pacemaker body and leads were negative.
87	Modified Duke criteria [21] supported the diagnosis of endocarditis: one major criterion
88	(evidence of endocardial involvement) and three minor criteria (predisposing heart
89	condition, fever over 38°C, and microbiologic evidence). With known susceptibility
90	results, gentamicin was terminated after a total of 6 days, and the subsequent
91	antimicrobial regimen was reduced to ampicillin (2.0 g IV) every 4 hours alone. Follow-
92	up blood cultures were negativeOn day 22, repeated TEE was performed, and new
93	vegetation was noted on the temporary pacemaker lead and tricuspid valve (Figure 2). As
94	the patient was not dependent on the temporary pacemaker, it was removed entirely. The
95	patient's clinical signs and symptoms improved, and ampicillin 2.0 g IV every 4 hours
96	was continued for six weeks after removing the temporary pacemaker, and no subsequent

97	antimicrobial regimen was necessary. We did not change regular medications during the
98	hospitalization or after discharge. The patient was discharged on day 64 without any
99	sequelae, and no recurrence of infection and cardiac events were observed during 12
100	months of follow-up.
101	
102	Systematic Literature Review
103	Two authors independently reviewed the titles and abstracts of database
104	records, retrieved full texts for eligibility assessment, and extracted data (Figure 3).
105	The respective search strategies for PubMed, Embase, and Ichushi-web are described in
106	Figure 3, and twenty-eight articles were retrieved. After removing duplicates and
107	irrelevant reports, four articles were selected [22,23]. After full-text evaluation, four
108	articles comprising four patients were included (Figure 3 and Table 1).
109	
110	Discussion
111	P. micra was originally classified as Peptostreptococcus micros. The classification of
112	the Gram-positive anaerobic cocci (GPAC) group has been remarkably transformed by a
113	new genetic classification method based on the 16S rRNA gene sequence introduced in
114	the late 1990s. Thereafter, P. micros was reclassified as P. micra in 2006 [24]. GPAC are

115	bacilli of low virulence detected as frequently as Gram-negative anaerobic rods
116	(GNAR), but their pathogenic implication has been underestimated because of their
117	slow growth and difficulty in identification compared to GNAR [25]. As GPAC
118	sometimes cause serious infections, identification of various GPAC species and
119	recognition of their resistance patterns to antimicrobial agents are important. Recently,
120	as MALTI-TOF MS has been introduced at various facilities, the identification of P .
121	micra has become practical, and the number of reports has increased [26,27].
122	In the present case, the portal of entry of <i>P. micra</i> was considered to be the oral cavity.
123	As <i>P. micra</i> is a part of the oral microbiota, the main risk factors for <i>P. micra</i> infection
124	are dental procedures, periodontitis, tooth extraction, and abscesses or caries of the
125	tongue apex [28]. Three of the five cases in our literature review had one of these
126	factors.
127	Right-sided IE accounts for 5%–12% of all IE cases [29,30]. Causes of right-
128	sided IE include (1) intravenous drug use, (2) CDIE, and (3) congenital heart disease.
129	The recommended way to remove infected devices is to extract all leads and the pulse
130	generator, which is associated with a complication rate of less than 2% [31]. Immediate
131	removal of infectious devices is associated with a lower recurrence rate and mortality
132	than retention or late removal [32,33]. Fortunately, the infected pacemaker in our case

133	was implanted approximately six months earlier. Transvenous extraction of leads with
134	less than one year of dwelling time is generally possible with simple traction [34];
135	therefore, we were able to successfully remove the entire system transvenously.
136	In the current case, we found that the temporary pacemaker was initially infected with
137	new vegetation, despite two subsequent negative blood cultures. There is limited
138	conclusive evidence on the optimal timing of reinsertion of the cardiac device or central
139	venous catheter after removal in cases of bacteremia. Some studies recommended that
140	new transvenous lead placement should be delayed by at least 14 days after removing
141	infectious devices [35]. Although the negative blood culture was confirmed by
142	appropriate antimicrobial administration, clinicians should observe cases for persistent
143	bacteremia if the patient's clinical signs deteriorate, as it may be difficult to detect <i>P</i> .
144	micra in blood cultures because of the characteristics of anaerobic bacteria [36]. A
145	prospective registry of CDIE reported that 11 of 434 enrolled patients with
146	cardiovascular implantable electronic device infections developed another infection
147	within six months [35]. The authors suggested that all such patients should be
148	thoroughly evaluated, and the need for device re-implantation should be reevaluated
149	This was particularly relevant in the current case. As negative blood cultures may not
150	necessarily indicate improvement in IE due to P. micra, clinicians should repeat

151 echocardiograms to evaluate for the presence of IE.

152	In our review, two of the five cases had severe valve dysfunction, eventually requiring
153	surgical intervention [19,20]. Despite appropriate antimicrobial therapy, invasive
154	procedures with CT-guided drainage were also required in one case presenting with a
155	lung abscess [23]. In another case, antimicrobial de-escalation resulted in a flare-up of
156	the infection, and antimicrobial susceptibility was detected [22], suggesting that the
157	possibility of mixed infections caused by anaerobic bacteria should always be
158	considered. Although it is difficult to make generalizations from this small number of
159	cases, P. micra sometimes progresses to abscess formation inconspicuously, and some
160	studies have reported cases of mixed infections. Therefore, when blood tests show an
161	increased inflammatory response or fever during the treatment period, it is advisable to
162	consider the possibility of recurrence, new lesions, or mixed infection.
163	In summary, <i>P. micra</i> can be a causative pathogen of IE and pacemaker infections.
164	Because of the difficulty in identifying the organism using traditional methods, the
165	introduction of MALDI-TOF MS is expected to improve the diagnostic rate of IE
166	caused by <i>P. micra</i> , which can sometimes lead to serious complications, suggesting the
167	importance of frequent follow-up. As only five cases have been reported, the
168	accumulation of future cases is expected.

170

172 Ethics approval and consent to participate

- 173 The treatment for the patient was performed in accordance with the tenets of the
- 174 Declaration of Helsinki. The patient reported in the study provided written informed
- 175 consent for all procedures.

176 **Consent for publication**

- 177 The patient enrolled in the study provided written informed consent for the publication
- 178 of his clinical details and accompanying images. A copy of the written informed consent
- is available for the journal.
- 180 Availability of data and materials
- 181 Not applicable.

182 **Conflicts of interests**

183 The authors have no financial disclosures or conflicts of interest to declare.

184 Funding

- 185 This research did not receive any specific grant from funding agencies in the public,
- 186 commercial, or not-for-profit sectors.

187 Authors' contributions

- 188 T.S. wrote a draft of the manuscript. K.I., T.M., Y.K., and N.M. supervised the study and
- 189 edited the manuscript. Y.K., H.A., and N.K. were the attending physicians of this
- 190 patient. F.K. and K.I. participated in the literature review. All authors reviewed the final
- 191 manuscript and approved its contents.
- 192 Acknowledgements
- 193 Not applicable.
- 194
- 195
- 196

197 **References**

- 198 [1] D.R. Murdoch, G.R. Corey, B. Hoen, J.M. Miró, V.G. Fowler Jr, A.S. Bayer, et al.,
- 199 Clinical Presentation, Etiology, and Outcome of Infective Endocarditis in the 21st
- 200 Century: the International Collaboration on Endocarditis-Prospective Cohort Study,
- 201 Arch. Intern. Med. 169 (2009) 463–473.
- 202 [2] X. Duval, C.S. Suty, F. Alla, M. Salvador-Mazenq, Y. Bernard, M. Weber, et al.,
- 203 Endocarditis in patients with a permanent pacemaker: a 1-Year epidemiological survey
- 204 on infective endocarditis due to valvular and/or pacemaker infection, Clin. Infect. Dis.

- 205 39 (2004) 68–74.
- 206 [3] E. Mylonakis, S.B. Calderwood, Infective endocarditis in adults, N. Engl. J. Med.
- 207 345 (2001) 1318–1330.
- 208 [4] T.J. Cahill, B.D. Prendergast, Infective endocarditis, Lancet. 387 (2016) 882–893.
- 209 [5] E. Durante-Mangoni, S. Bradley, C. Selton-Suty, M.F. Tripodi, B. Barsic, E. Bouza,
- 210 et al., Current features of infective endocarditis in elderly patients: results of the
- 211 International Collaboration on Endocarditis Prospective Cohort Study, Arch. Intern.
- 212 Med. 168 (2008) 2095–2103.
- 213 [6] E.E. Hill, P. Herijgers, P.Claus, S. Vanderschueren, M.C. Herregods, W.E.
- 214 Peetermans, Infective endocarditis: changing epidemiology and predictors of 6-month
- 215 mortality: a prospective cohort study, Eur. Heart J. 28 (2007) 196–203.
- 216 [7] P.B. Lockhart, M.T. Brennan, M. Thornhill, B.S. Michalowicz, J. Noll, F.K. Bahrani-
- 217 Mougeot, et al., Poor oral hygiene as a risk factor for infective endocarditis-related
- 218 bacteremia, J. Am. Dent. Assoc. 140 (2009) 1238–1244.
- 219 [8] L. Østergaard, N. Valeur, A. Wang, H. Bundgaard, M. Aslam, G. Gislason, et al.,
- 220 Incidence of infective endocarditis in patients considered at moderate risk, Eur. Heart J.
- 221 40 (2019) 1355–1361.
- [9] I.S. Schwartz, N. Pervez, Bacterial endocarditis associated with a permanent

- transvenous cardiac pacemaker, JAMA. 218 (1971) 736–737.
- [10] T. Olsen, O.D. Jørgensen, J.C. Nielsen, A.M. Thøgersen, B.T. Philbert, J.B.
- Johansen, Incidence of device-related infection in 97 750 patients: clinical data from the
- 226 complete Danish device-cohort (1982-2018), Eur. Heart J. 40 (2019) 1862–1869.
- 227 [11] M.R. Sohail, D.Z. Uslan, A.H. Khan, P.A. Friedman, D.L. Hayes, W.R. Wilson, et
- al., Management and outcome of permanent pacemaker and implantable cardioverter-
- defibrillator infections, J. Am. Coll. Cardiol. 49 (2007) 1851–1859.
- 230 [12] D.A. Murdoch, Gram-positive anaerobic cocci, Clin. Microbiol. Rev. 11 (1998)
- 231 81–120.
- 232 [13] M. Boattini, G. Bianco, R. Cavallo, C. Costa, Parvimonas micra bacteremia
- 233 following endoscopic retrograde cholangiopancreatography: A new route of infection,
- 234 Anaerobe. 54 (2018) 136–139.
- 235 [14] S.S. Yun, H.S. Cho, M. Heo, J.H. Jeong, H.R. Lee, S. Ju, et al., Lung abscess by
- 236 Actinomyces odontolyticus and Parvimonas micra co-infection presenting as acute
- respiratory failure: a case report, Med (Baltimore). 98 (2019) e16911.
- 238 [15] J.H. Ko, J.Y. Baek, C.I. Kang, W.J. Lee, J.Y. Lee, S.Y. Cho, et al., Bacteremic
- 239 meningitis caused by Parvimonas micra in an immunocompetent host, Anaerobe. 34
- 240 (2015) 161–163.

- 241 [16] J.P. Frat, C. Godet, G. Grollier, J.L. Blanc, R. Robert, Cervical spinal epidural
- abscess and meningitis due to Prevotella oris and Peptostreptococcus micros after
- retropharyngeal surgery, Intensive Care Med. 30 (2004) 1695.
- 244 [17] H. Uemura, K. Hayakawa, K. Shimada, M. Tojo, M. Nagamatsu, T. Miyoshi-
- Akiyama, et al., Parvimonas micra as a causative organism of spondylodiscitis: a report
- of two cases and a literature review. Int. J. Infect. Dis. 23 (2014) 53–55.
- 247 [18] T. Sawai, S. Koga, S. Ide, S. Yoshioka, N. Matsuo, H. Mukae, An iliopsoas abscess
- caused by Parvimonas micra: a case report, J. Med. Case Rep. 13 (2019) 47.
- 249 [19] C.A. Gomez, D.A. Gerber, E. Zambrano, N. Banaei, S. Deresinski, B.G.
- 250 Blackburn, First case of infectious endocarditis caused by Parvimonas micra, Anaerobe.
- 251 36 (2015) 53–55.
- 252 [20] D. Ho, G. Ang, C. Er, S.F. Yap, V. Meyyur Aravamudan, An unusual presentation
- of Parvimonas micra infective endocarditis, Cureus. 10 (2018) e3447.
- 254 [21] L.M. Baddour, W.R. Wilson, A.S. Bayer, V.G. Fowler, I.M. Tleyjeh, M.J. Rybak, et
- al., Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management
- 256 of complications: a scientific statement for healthcare professionals from the American
- 257 Heart Association, Circulation. 132 (2015) 1435–1486.
- 258 [22] M. Maki, A. Kawakami, I. Suzuki, S. Fujie, M. Arai, E. Watanabe, J. Kunimatsu, et

- al., A case of infective endocarditis and lung abscess associated with Parvimonas micra
- bacteremia, The Japanese Society of Internal Medicine. 632 (2017) 34. [Japanese]
- 261 [23] K. Iwasaki, K. Sumida, D. Yoshimura, H. Inoue, A case of infective endocarditis
- caused by multiple anaerobic bacteria, Journal of Infectious Diseases. 91 (2017) 858.
- 263 [Japanese]
- 264 [24] B.J. Tindall, J.P. Euzéby, Proposal of Parvimonas gen. nov. and Quatrionicoccus
- 265 gen. nov. as replacements for the illegitimate, prokaryotic, generic names Micromonas
- 266 Murdoch and Shah 2000 and Quadricoccus Maszenan et al. 2002, respectively, Int. J.
- 267 Syst. Evol. Microbiol. 56 (2006) 2711–2713.
- 268 [25] E.C. Murphy, I.M. Frick, Gram-positive anaerobic cocci--commensals and
- 269 opportunistic pathogens, FEMS Microbiol. Rev. 37 (2013) 520–553.
- 270 [26] T. Watanabe, Y. Hara, Y. Yoshimi, Y. Fujita, M. Yokoe, Y. Noguchi, Clinical
- 271 characteristics of bloodstream infection by Parvimonas micra: retrospective case series
- and literature review, BMC Infect. Dis. 20 (2020) 578.
- 273 [27] A.C. Veloo, M. Erhard, M. Welker, G.W. Welling, J.E. Degener, Identification of
- gram-positive anaerobic cocci by MALDI-TOF mass spectrometry, Syst. Appl.
- 275 Microbiol. 34 (2011) 58–62.
- 276 [28] F. Cobo, J. Rodríguez-Granger, A. Sampedro, L. Aliaga-Martínez, J.M. Navarro-

- 277 Marí, Pleural effusion due to Parvimonas micra. A case report and a literature review of
- 278 30 cases, Rev. Esp. Quimioter. 30 (2017) 285–292.
- [29] G. Habib, P. Lancellotti, M.J. Antunes, M.G. Bongiorni, J.P. Casalta, F. Del Zotti,
- et al., 2015 ESC Guidelines for the management of infective endocarditis: the task force
- for the management of infective endocarditis of the European Society of Cardiology
- 282 (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the
- European Association of Nuclear Medicine (EANM), Eur. Heart J. 36 (2015) 3075-
- 284 **3128**.
- [30] S. Leone, V. Ravasio, E. Durante-Mangoni, M. Crapis, G. Carosi, P.G. Scotton, et
- al., Epidemiology, characteristics, and outcome of infective endocarditis in Italy: the
- Italian Study on Endocarditis, Infection. 40 (2012) 527–535.
- 288 [31] J.A. Sandoe, G. Barlow, J.B. Chambers, M. Gammage, A. Guleri, P. Howard, et al.,
- 289 Guidelines for the diagnosis, prevention and management of implantable cardiac
- 290 electronic device infection. Report of a joint Working Party project on behalf of the
- 291 British Society for Antimicrobial Chemotherapy (BSAC, host organization), British
- 292 Heart Rhythm Society (BHRS), British Cardiovascular Society (BCS), British Heart
- 293 Valve Society (BHVS) and British Society for Echocardiography (BSE), J. Antimicrob.
- 294 Chemother. 70 (2015) 325–359.

- 295 [32] K.Y. Le, M.R. Sohail, P.A. Friedman, D.Z. Uslan, S.S. Cha, D.L. Hayes, et al.,
- 296 Impact of timing of device removal on mortality in patients with cardiovascular
- implantable electronic device infections, Heart Rhythm. 8 (2011) 1678–1685.
- 298 [33] E. Athan, V.H. Chu, P. Tattevin, C. Selton-Suty, P. Jones, C. Naber, et al., Clinical
- 299 characteristics and outcome of infective endocarditis involving implantable cardiac
- 300 devices, JAMA. 307 (2012) 1727–1735.
- 301 [34] M. Döring, S. Richter, G. Hindricks, The diagnosis and treatment of pacemaker-
- associated infection, Dtsch. Arztebl. Int. 115 (2018) 445–452.
- 303 [35] T.A. Boyle, D.Z. Uslan, J.M. Prutkin, A.J. Greenspon, L.M. Baddour, S.B. Danik,
- 304 et al., Reimplantation and repeat infection after cardiac-implantable electronic device
- 305 infections: Experience From the MEDIC (Multicenter Electrophysiologic Device
- 306 Infection Cohort) Database, Circ. Arrhythm. Electrophysiol. 10 (2017). E004822.
- 307 [36] A. Durovic, N. Eberhard, S. Schären, A.F. Widmer, Parvimonas micra as a rare
- 308 cause of spondylodiscitis case series from a single centre, Swiss Med. Wkly. 150
- 309 (2020) w20272.
- 310

311 Figure Captions

- Figure 1. Vegetation on the atrial lead of the pacemaker and tricuspid valve
- 313 Transesophageal echocardiography reveals a 15.7-mm fluttering structure in the atrial
- lead of the pacemaker and a 10.4-mm vegetation-like fluttering structure in the tricuspid

315 valve.

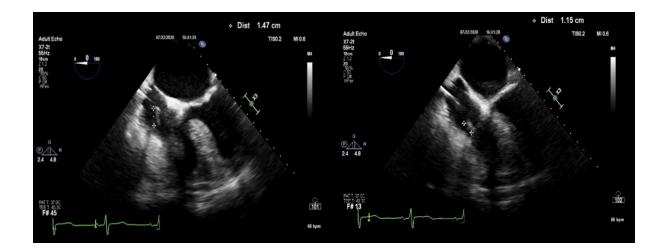
316

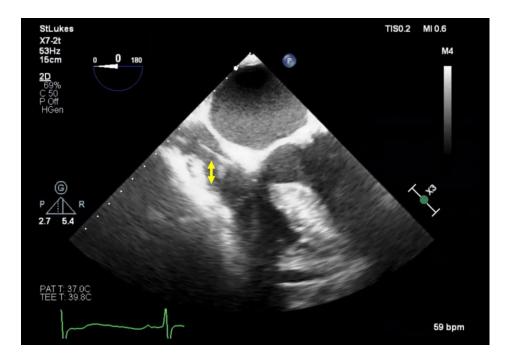
- 317 Figure 2. Removal of the pacemaker atrial lead
- 318 A red deposit on the pacemaker atrial lead that was removed is shown.

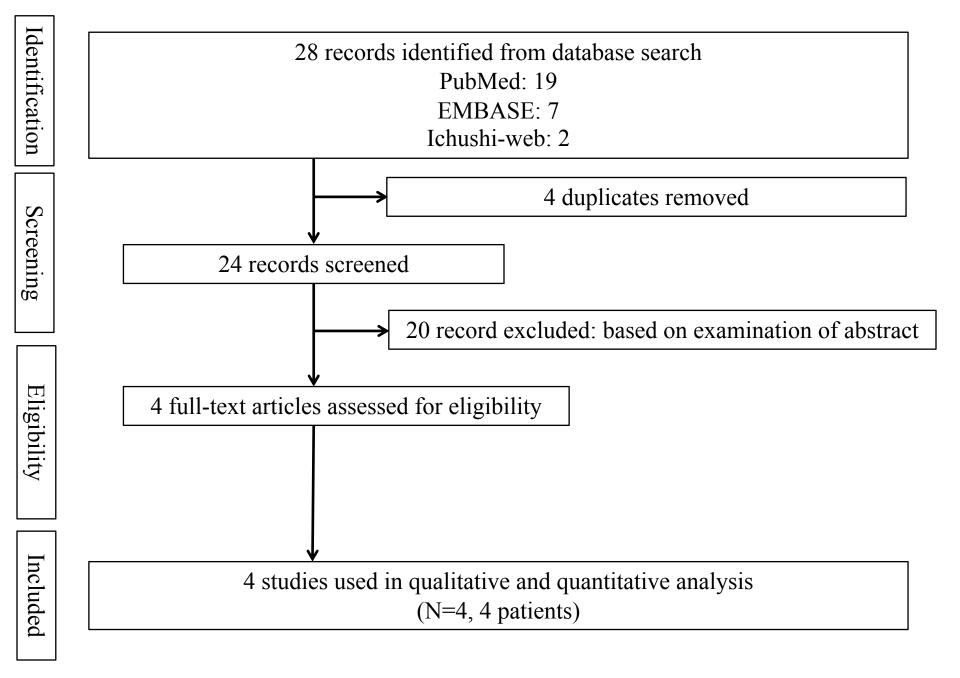
319

320 Figure 3. Flow diagram of the systematic literature review

321


2 Figure Legends


3	Figure 1. Flow diagram of the systematic literature review
4	
5	Figure 2. Vegetation on the atrial lead of the pacemaker and tricuspid valve
6	Transesophageal echocardiography revealed a 15.7 mm fluttering structure in the atrial
7	lead of the pacemaker and a 10.4 mm vegetation-like fluttering structure in the tricuspid
8	valve
9	
10	Figure 3. Removed pacemaker atrial lead
11	A red deposit on the pacemaker atrial lead that was removed was found
12	
13	
14	Tables


15 Table 1. Characteristics of patients with endocarditis due to *Parvimons micra*

Case	Year of Report	Ref. No	Age (years)	Gender	Risk Factor for Infective Endocarditis	Infected Valves	Echocardiographic findings/Comorbidities	Diagnosti c method	Days to Diagnosis	Days to positive Blood Culture	Antimicrobial therapy	Cardiac Surgery
1	2015	[19]	71	М	None	A, M-N	Perivalvular abscess	TEE	8 days	5 days	plus Gentamicin → Ampicillin/Sulbactam	Aortic valve and mitral valve replacement
2	2017	[40]	48	F	Tooth Extraction	1-N, PL	Vegetation Septic pulmonary embolism Bloodstream infection of <i>Fusobacterium</i> <i>nucleatum</i> (Co-infection)	TEE	69 days	4 days	Ampicillin/Sulbactam → plus Gentamicin → Ampicillin → Plus Metronidazole	No
3	2017	[39]	78	М	Laryngeal cancer and total laryngectomy, Poor oral hygiene	A-N	Septic Pulmonary embolism, lung abscess	TTE	NA	NA	Ampicillin/Sulbactam → Clindamycin	Drainage for lung abscess
4	2018	[20]	42	М	Tooth Extraction	M-ME	Mobile friable/ vegetations arising from the mitral prosthetic valve	TEE	22 days	NA	Ceftriaxone plus Vancomycin → Penicillin G	Reoperation of Mitral Valve for control heart failure
5	2020	PR	82	М	Poor Oral Hygiene	T-N, PL	Vegetation along pacemaker leads and on tricuspid valve	TEE	7 days	5 days	plus Gentamicin \rightarrow	Removal of permanent pacemaker

PR: present report; N/A: not available; Valve: T, tricuspid; A: aortic; M: mitral; N: native; P: prosthetic; ME: mechanical; PL: pacemaker lead

